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Abstract

Introduction—Quantifying associations between genetic mutations and loss of ambulation 

(LoA) among males diagnosed with childhood-onset dystrophinopathy is important for 

understanding variation in disease progression and may be useful in clinical trial design.

Methods—Genetic and clinical data from the Muscular Dystrophy Surveillance, Tracking, and 

Research Network for 358 males born and diagnosed from 1982–2011 were analyzed. LoA was 

defined as the age at which independent ambulation ceased. Genetic mutations were defined by 

overall type (deletion/duplication/point mutation) and among deletions, those amenable to exon-

skipping therapy (exons 8, 20, 44–46, 51–53) and another group. Cox proportional hazards 

regression modeling was used to estimate hazards ratios (HR) and 95% confidence intervals (CI).

Results—Mutation type did not predict time to LoA. Controlling for corticosteroids, Exons 8 

(HR=0.22; 95% CI=0.08,0.63) and 44 (HR=0.30; 95% CI=0.12,0.78) were associated with 

delayed LOA compared to other exon deletions.

Discussion—Delayed LoA in males with mutations amenable to exon-skipping therapy is 

consistent with previous studies. These findings suggest that clinical trials including exon 8 and 44 

skippable males should consider mutation information prior to randomization.
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1. Introduction

The dystrophinopathies, Duchenne and Becker muscular dystrophies (DMD and BMD, 

respectively), are X-linked muscle disorders caused by mutations in the DMD gene that 

produce a spectrum of severity and progression.1 Individuals with DMD have earlier onset 

of symptoms and faster disease progression with loss of ambulation (LoA) between 10 and 

12 years of age, whereas individuals with BMD usually maintain ambulation into adulthood.
2 LoA is an important marker of disease progression.3 Glucocorticoids may delay LoA and 

are now considered standard of care.4–8

Many factors contribute to the rate of progression of the dystrophinopathies including 

genetic and environmental modifiers.9–16 Variability in progression is partly attributed to the 

specific mutation in the DMD gene. Most often, DMD is caused by out-of-frame deletions 

of one or more exons, whereas in-frame deletions are usually associated with BMD.17 This 

observation led to the development of therapeutic approaches that induce exon-skipping to 

restore an intact reading-frame.18 With the development of genetic therapies, a better 

understanding of mutation-associated variance in disease progression is important for 

clinical trial design (e.g. selection of a control group) and can have an effect on 

interpretation of results.

Prior clinic-based natural history studies suggest differences in the decline of ambulation or 

age at LoA in patients with DMD mutations amenable to exon skipping therapies.19–21 

Describing age at LoA by mutation type in a population-based cohort may help determine 

whether this association is seen on a population level. The purpose of this study was to 

quantify the association of age at LoA by DMD mutation class in males with childhood-

onset dystrophinopathies from a population-based cohort in the United States.

Methods

The Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet) is a 

population-based, longitudinal surveillance program for childhood-onset dystrophinopathies. 

The MD STARnet retrospectively identified and longitudinally followed all individuals 

diagnosed with a dystrophinopathy who were born on or after January 1, 1982 and on or 

before December 31, 2011 and were diagnosed by age 21 living in defined surveillance 

areas. Surveillance was initiated in Arizona, Colorado, Iowa, and western New York State in 

2004, and Georgia and Hawaii in 2006 and 2010, respectively.

Case ascertainment occurred using multiple sources including healthcare facilities (e.g., 

neuromuscular clinics, physical medicine and rehabilitation clinics, emergency departments, 

hospitals) and administrative data (e.g., birth defects surveillance, state vital records, 

hospital discharge). Details on case identification and data collection were described 
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elsewhere.22 A committee of neuromuscular clinicians reviewed each case and assigned a 

diagnostic case status of definite, probable, possible, manifesting female, or asymptomatic, 

based on clinical trajectory and laboratory and genetic test results.23 Medical record 

abstraction was conducted annually through December 2011. For individuals identified 

during September 2011 through December 2011, medical record abstraction was conducted 

through December 2012.

The MD STARnet identified 1054 affected individuals. Exclusion criteria outlined in 

Supplemental Figure 1 were applied and data from 358 individuals were available for 

analysis.

Ethics Statement

All sites had public health authority and IRB approval or exemption to abstract data from 

medical records of individuals diagnosed with childhood-onset dystrophinopathy.

Outcome

Loss of ambulation—Ambulation status (independent or ceased) and use of a wheelchair 

(manual or power, part- or full-time) were entered into the abstraction form annually or 

when a change in mobility status (e.g., wheelchair use began) was noted in the medical 

record. The date (or age when date was missing) of the mobility status was also entered.

LoA was defined as full-time use of a wheelchair or indication that independent ambulation 

had ceased. Age at LoA was calculated using date (or age if date was not documented) of 

first full-time wheelchair use or when ambulation ceased. The algorithm included record 

review to verify consistency of mobility-related data. For time-to-event analyses, the last 

known age ambulating, which was identified by the last entry in the mobility table, was used 

for censored cases.

Predictor

Genetic mutations—The MD STARnet collected genetic test results. Available results 

were entered into standardized forms specific to mutation type (deletion, duplication, or 

point mutation). For duplications and deletions, information about which exons were deleted 

or duplicated and the reading frame prediction was entered. For point mutations, the 

predicted effect (missense, nonsense, frameshift) and affected exon, nucleotide start/stop 

locations, and protein and codon changes were included. Additionally, verbatim text from 

laboratory test results and physician notes were entered into the form for further description 

of the genetic findings. Genetic mutations were classified into type (deletion, duplication, or 

point mutation; Table 1). Deletions were further classified into subgroups comprised of 

mutations potentially treatable (via restoration of the reading frame) by skipping of exons 8, 

20, 44, 45, 46, 51, 52, or 53, with the remaining deletions being grouped in an “Other” 

category (refer to footnotes of Table 1 for details). When deletions were deemed skippable at 

more than one exon, they were included in the subgroup that would give the highest 

frequency count to increase the power in that subgroup.
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Covariates

Corticosteroid use—Abstractors annually entered start and stop dates of corticosteroid 

use, type of corticosteroid used (prednisone or deflazacort), dosage, and reasons for 

discontinuing use if corticosteroids had been stopped. To account for variability in continuity 

of use and length of follow-up, the start and stop dates were used to construct corticosteroid 

use as a time-varying covariate.

Age at symptom onset

Clinical signs and symptoms were entered into the abstraction form using a drop-down 

menu until the time at which the MD STARnet clinical review committee assigned a case 

definition. The age at the first documented motor symptom (Gower sign, trouble walking/

running/jumping, frequent falling, inability to keep up with peers, abnormal gait, loss of 

motor skills, gross motor delay, muscle weakness) was derived from an algorithm developed 

by MD STARnet researchers.12

Race and ethnicity

Parental race and ethnicity were collected from birth certificates, where available. Race was 

included as a categorical variable with categories White, Black or African American, Native 

American or American Indian or Alaska Native, Asian or Hawaiian or Pacific Islander, 

Multiple, Other, and Unknown. Ethnicity was included as a categorical variable with 

categories of not Hispanic or Latino, Hispanic or Latino, and Unknown.

Statistical Analysis

Observed mean ages at LoA among males who lost ambulation for each mutation group 

were compared using one-way analysis of variance (ANOVA). A single F-test was carried 

out to simultaneously test if any of the mutation group means differed from any other. If 

statistically significant (p < 0.05), post-hoc pairwise differences were reported, along with 

95% confidence intervals (CIs). Pairwise differences were adjusted for multiple comparisons 

by calculating CIs based on the studentized range distribution using the Tukey-Kramer 

method to account for differences in group sizes.24 Kaplan-Meier curve estimation was used 

to depict the probability of ambulation by age, mutation type (deletion, duplication, point 

mutation) and exon skipping subgroups (each exon subgroup versus all other subgroups 

combined). Cox proportional hazard modeling was used to estimate annual risk of LoA by 

mutation type and exon subgroups. Three models were used to compare risk of LoA by 

mutation type (or exon skippable subgroup): Model I included mutation type (or exon 

skippable subgroup) and corticosteroid use; Model II included mutation type (or exon 

skippable subgroup), corticosteroid steroid use, race, and ethnicity; and Model III included 

mutation type (or exon skippable subgroup), corticosteroid use, and age at onset of 

symptoms. Although corticosteroid use varies substantially based on a variety of factors, 

corticosteroids remain the standard therapeutic treatment for males with DMD.25 Thus, we 

retained corticosteroid use as a time varying covariate in all models. For each model, 

pairwise hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated and 

corrected for multiple comparisons using the Tukey-Kramer method. Sensitivity analyses 

that examined (1) the impact of a single outlier with late age at onset of symptoms and (2) 
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reclassification of 14 males with exon 45 deletions from the exon 46 to exon 44 skippable 

group were also conducted, since such individuals can utilize therapy targeted at skipping 

either exon 44 or 45 making their classification in one group somewhat arbitrary. Analyses 

were carried out using R26, version 3.4.1, using the survival package27, version 3.1.8, and 

the multcomp package28, version 1.4.10.

Results

Mutation Type

Cases came from five states: Arizona (n = 74), Colorado (n = 92), Georgia (n = 94), Iowa (n 

= 53), and New York (n = 45). The overall average duration of corticosteroid use was 3.10 

years (SD=2.84); 83% of cases still walking and 90% of those with LoA used corticosteroids 

for at least 6 months. Except for the duplication group, the observed median ages at LoA for 

the different mutation groups were comparable to the mean ages and were similar across 

groups (Table 1). Among those with duplications, the mean age was larger than the median, 

suggesting outliers with later ages of LoA. Testing for mean differences in age of LoA 

among deletion, duplication, and point mutation types using the ANOVA test was not 

statistically significant (F-value (df=1,180) = 1.26, p = 0.29) (data not shown). The log-rank 

test for the Kaplan-Meier curve estimation was also not statistically significant for mutation 

type (χ2 (2) = 0.89) (Figure 1) suggesting no differences in survival time by mutation type. 

Finally, the adjusted annual risk of LoA among those with duplication or point mutations did 

not differ from those with deletions (Table 2); most estimates approximated 1.00 and the 

95% CIs contained the null. Further, the magnitude of the HRs did not vary substantively 

across the three models.

Exon skippable subgroups

Observed median ages at LoA were similar to mean ages for most exon skippable subgroups 

(Table 1); the overall test for differences in observed ages across exon skippable subgroups 

was not statistically significant (F-value (df=8,125) = 1.72, p = 0.10) (data not shown). The 

curves estimated from Kaplan-Meier analyses comparing exon skippable subgroups to all 

other subgroups combined are presented in Figure 2. The overall log-rank tests were 

statistically significant for exon 8 skippable and exon 44 skippable subgroups (see Figure 2 

legend) when compared to the other subgroups, respectively. Longer times to LoA were 

found among specific exon skippable subgroups: median LoA survival ages were 14.8 years 

for the exon 8 skippable subgroup and 13.8 years for the exon 44 subgroup (data not shown). 

The comparison group had a median LoA survival age of 11.6 for both models. No other 

comparisons were significantly different. Coded as a categorical variable, the results of the 

Cox proportional hazards model showed a statistically significant overall effect for exon 

skippable subgroup (likelihood ratio χ2 (9) = 30.32, p < 0.001). The pattern of risk varied 

across exon skippable subgroups. Compared to those with ‘other’ exon skippable mutations, 

reduced adjusted annual risks were observed for LoA among individuals with exon 8 

skippable mutations (HR=0.22, 95% CI=0.08, 0.63) and those with exon 44 skippable 

mutations (HR = 0.30, 95% CI = 0.12, 0.78) (Table 3). Reduced adjusted annual risk was 

also found for exon 46 skippable mutations compared to other skippable exons, but the CI 

contained the null. Elevated adjusted annual risks of LoA were found for exon 45 skippable 
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and exon 52 skippable mutations, compared to those with other skippable exons, but the CI 

contained the null. The pattern of findings was again consistent across the three models.

Additional pairwise comparisons of all exon skippable subgroups using Model I are shown 

in Figure 3. Decreased adjusted annual risk of LoA was found among those with exon 8 

skippable mutations compared to the other skippable subgroup, but only the risk for the 

pairwise comparison between the exon 8 and exon 45 and 51 skippable subgroups remained 

statistically significant after adjusting for multiple comparisons (Exon 45: HR = 5.80; 95% 

CI = 1.07, 31.41; Exon 51: HR = 5.28; 95% CI = 1.01, 27.66 for Model I). Similarly, the 

exon 44 skippable subgroup showed decreased adjusted annual risk of LoA compared to the 

other exon skipping subgroup; however, no pairwise HRs were statistically significant after 

adjusting for multiple comparisons. The HR for the comparison of the exon 8 and exon 44 

skippable subgroups was near unity, as were the HRs for the remaining comparisons, with 

all CIs containing the null.

Sensitivity analyses

As a sensitivity analysis, Models I and II were fit omitting a single outlier, a male from the 

exon 44 skippable subgroup that had a very late age of onset of symptoms (>18 years old). 

For both models, this omission resulted in a predictably large increase in the estimated HR 

for the exon 44 skippable subgroup (Model I: HR = 0.39; 95% CI = 0.15, 1.01; Model II: 

HR = 0.48; 95% CI = 0.18, 1.28) compared with the results in Table 3. In particular, the HRs 

were no longer statistically significant when compared with the other exon skippable group.

To further study the exon 44 skippable subgroup, an additional analysis was carried out in 

which 14 males with a single exon 45 deletion were reclassified from the exon 46 to the 

exon 44 skippable subgroup. For this analysis, the two remaining males in the exon 46 

skippable subgroup (with exon 26–45 and exon 43–45 deletions, respectively) were moved 

to the “other” group. For all three models, this resulted in a modest increase in the estimated 

HR for the exon 44 skippable subgroup compared to the results in Table 3, while remaining 

statistically significantly smaller than one (HR = 0.47; 95% CI = 0.25, 0.89 for Model I). 

This provides further evidence for a lower annual risk of LoA among males with DMD and 

exon deletions amenable to exon 44 skipping.

4. Discussion

In this analysis, we examined two primary questions regarding the prognostic impact of 

genetic mutations on progression to LoA in males with DMD. First, we considered the 

question of whether there were any differences in this progression among the three broad 

mutation types: deletions, duplications, and point mutations. For this question, our analysis 

showed no differences by mutation type groups among males with dystrophinopathy. This 

indicates that classification of a male with dystrophinopathy based solely on one of these 

mutation groups was insufficient to predict any difference in disease progression.

Second, we restricted our analysis to individuals with deletions amenable to exon skipping 

therapies. This issue is particularly important as various therapies in development target 

specific exons for skipping, raising questions on how to properly construct a control group 
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from a limited patient pool. Regarding this issue, our analyses demonstrated differences 

among exon skippable subgroups, although specific differences varied across models 

depending on which characteristics were controlled for. The most consistent finding from 

these analyses is that the exon 8 and 44 skippable subgroups showed lower annual risks of 

LoA relative to other amenable subgroups, although specific estimates must take into 

account the limited sample sizes. Our findings are consistent with those from the CINRG 

natural history study,19 which showed a significantly longer time to LoA in males with 

deletions of exons 3–7, a subgroup of the exon 8 skippable subgroup considered here. The 

CINRG cohort also observed that males with deletions amenable to exon 44 skipping had 

longer time to LoA when compared to a group of males with DMD who had out-of-frame 

deletions not amenable to skipping of exons 44, 45, 51, or 53. The differences in LOA and 

the exon 3–7 and exon 44 skippable groups are corroborated by previous phenotyping and 

may be explained at a molecular level. In our group, eleven of thirteen mutations in the exon 

8 skippable group were composed of exon 3–7 deletions, which have previously been 

reported with milder phenotype and may be an exception to the reading frame rule.29 

Moreover, various other exon 44 skippable mutations (e.g. exon 45 deletions) have also 

previously been associated with milder phenotypes and potential for endogenous exon 

skipping.30 It should be noted that in the CINRG dataset, LoA was defined as patient-or-

caregiver-reported age at continuous wheelchair use, approximated to the nearest month, and 

verified as unable to perform the 10 m run/walk assessment by a CINRG-trained clinical 

evaluator. In our analysis, LoA was defined as continuous wheelchair use only. Although the 

differences for the exon 44 group disappeared when adjusting for multiple comparisons, 

these results should be considered in light of the conservative nature of such methods and 

the very small sample sizes available for the exon 44 skippable subgroup.

Strengths of this study include utilizing a large cohort of males with dystrophinopathy 

identified through a population-based surveillance system. This study has limitations. MD 

STARnet retrospectively identified cases using medical records. Medical record abstraction 

started in 2004 and some medical records were up to 20 years old; we may have not 

identified all cases who died before medical record abstraction started. Some cases may have 

received care outside the surveillance area and this information may not have been 

abstracted. Incomplete information in the medical records may lead to misclassification of 

variables. During the surveillance period, diagnostic testing patterns changed over time and 

point mutation testing in this cohort was low.31 Among the definite cases identified in the 

surveillance system, we excluded approximately a quarter of individuals because they did 

not have genetic information available in their clinic record. Results from this analysis may 

not be generalizable to all males living with dystrophinopathy in the United States.

In conclusion, we investigated the association of mutation class, including mutations 

amenable to exon skipping therapies, with age at LoA in males with dystrophinopathy. The 

finding of prolonged time to LoA in males with mutations amenable to skipping of exons 8 

or 44 is consistent with previous studies. By better characterizing the patient populations to 

be enrolled, our findings may be informative for clinical trials that seek to find treatments 

that are specific to subpopulations with dystrophinopathies.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Kaplan-Meier curves for mutation type groups. Muscular Dystrophy Surveillance, Tracking, 

and Research Network (MD STARnet) 1982–2012. Kaplan-Meier curves comparing 

probability of ambulation as a function of age in years for the three major mutation groups: 

deletion, duplication, and point mutation.
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Figure 2: 
Kaplan-Meier curves for exon skippable subgroups. Muscular Dystrophy Surveillance, 

Tracking, and Research Network (MD STARnet) 1982–2012. Kaplan-Meier curves 

comparing age (in years) at loss of ambulation for (A) exon 8 skippable deletions, log-rank 

χ2 (1) = 9.68, p < 0.01; (B) exon 20 skippable deletions, log-rank χ2 (1) = 0.18, p > 0.05; 

(C) exon 44 skippable deletions, log-rank χ2 (1) = 5.05, p < 0.05; (D) exon 45 skippable 

deletions, log-rank χ2 (1) = 3.51, p > 0.05; (E) exon 46 skippable deletions, log-rank χ2 (1) 

= 0.54, p > 0.05; (F) exon 51 skippable deletions, log-rank χ2 (1) = 2.45, p > 0.05; (G) exon 
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52 skippable deletions, log-rank χ2 (1) = 1.26, p > 0.05; and (H) exon 53 skippable 

deletions, log-rank χ2 (1) =1.47, p > 0.05. In all subplots, the comparison group is 

comprised of all males classified as having a deletion genetic type not in the indicated exon 

skippable subgroup.
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Figure 3: 
Pairwise hazard ratios for exon skippable subgroups based on Model I. Muscular Dystrophy 

Surveillance, Tracking, and Research Network (MD STARnet) 1982–2012. Pairwise hazard 

ratio (HR) estimates for each exon skippable subgroup when controlling for steroid use. A 

HR estimate greater than one indicates a younger age for loss of ambulation for the group on 

the left hand side relative to the group listed on the right hand side. Right facing arrows 

indicate an estimated HR larger than 10. Confidence intervals are corrected for multiple 

comparisons using the Tukey-Kramer method.
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Table 1:

Summary of loss of ambulation (LoA) information for mutation type groups. Muscular Dystrophy 

Surveillance, Tracking, and Research Network (MD STARnet) 1982–2012.

No. No. LoA (%) Mean Age at LoA (years) Median Age at LoA (years)

Mutation Type Deletion 259 138 (53.3%) 11.14 10.96

Duplication 34 18 (52.9%) 12.09 10.71

Point Mutation 65 31 (47.7%) 11.02 10.63

Total 358 187 (52.2%) 11.21 10.83

No. No. LoA (%) Mean Age at LoA (years) Median Age at LoA (years)

Exon Skippable subgroup Exon 8 Skippable
a 13 4 (30.8%) 13.54 13.22

Exon 20 Skippable
b 7 4 (57.1%) 11.06 11.12

Exon 44 Skippable
c 12 6 (50.0%) 13.75 13.03

Exon 45 Skippable
d 31 20 (64.5%) 10.93 11.21

Exon 46 Skippable
e 16 8 (50.0%) 11.68 11.58

Exon 51 Skippable
f 46 26 (56.5%) 10.78 10.59

Exon 52 Skippable
g 17 8 (47.1%) 10.71 9.82

Exon 53 Skippable
h 38 20 (52.6%) 11.06 11.16

Other
i 79 42 (53.2%) 10.88 10.39

Abbreviations: LoA: loss of ambulation

a
Deletions of exons 3–7 (11), 5–7 (1), or 6–7 (1).

b
Deletions of exons 3–19 (1), 17–19 (2), 19 alone (3), or 21 alone (1).

c
Deletions of exons 13–43 (1), 30–43 (1), 35–43 (1), 38–43 (1), 42–43 (1), 43 alone (2), 45–54 (4), or 45–56 (1).

d
Deletions of exons 12–44 (2), 18–44 (2), 44 alone (9), 46–47 (8), 46–48 (3), 46–49 (1), 46–51 (3), 46–55 (2), or 46–59 (1).

e
Deletions of exons 26–45 (1), 43–45 (1), or 45 alone (14).

f
Deletions of exons 45–50 (17), 47–50 (2), 48–50 (10), 49–50 (12), 50 alone (5).

g
Deletions of exons 51 alone (12) or 53–55 (5).

h
Deletions of exons 34–52 (1), 45–52 (11), 47–52 (2), 48–52 (9), 49–52 (4), 50–52 (4), or 52 alone (7).

i
Comprised of all males with exon deletions not falling into one of the groups as defined in a-h.
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Table 2:

Hazard ratios (HR) for Cox regression models I, II, and III for comparing loss of ambulation across mutation 

type groups. Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet) 1982–2012.

No. (%) Model I Model II Model III

Factor Level HR (95% CI) HR (95% CI) HR (95% CI)

Mutation Type Deletion 259 (72.3%)
1
a

1
a

1
a

Duplication 34 (9.5%) 0.95 (0.58, 1.58) 1.01 (0.60, 1.69) 1.00 (0.60, 1.66)

Point Mutation 65 (18.2%) 0.92 (0.62, 1.36) 1.08 (0.72, 1.63) 0.84 (0.57, 1.24)

Corticosteroid Use
b 226 (63.1%) 0.75 (0.56, 1.00) 0.72* (0.53, 0.97) 0.71* (0.53, 0.95)

Race White 274 (76.5%) -
1
a -

Asian
c † - 0.68 (0.22, 2.16) -

Black or AA 21 (5.9%) - 0.91 (0.49, 1.67) -

Native American
d † - 2.03 (0.28, 14.84) -

Multiple 11 (3.1%) - 0.69 (0.25, 1.90) -

Other 12 (3.4%) - 0.70 (0.30, 1.65) -

Unknown 27 (7.5%) - 0.54 (0.22, 1.30) -

Ethnicity Not Hispanic or Latino 253 (70.7%) -
1
a -

Hispanic or Latino 60 (16.8%) - 1.92* (1.30, 2.84) -

Unknown 45 (12.6%) - 0.75 (0.41, 1.37) -

Age at Onset - - - 0.89* (0.84, 0.95)

Abbreviations: HR = hazard ratio, CI = confidence interval, AA = African American. - = covariate not included in model.

Reference categories have a HR of 1 and no CI.

a
Reference group.

b
For Cox regression models in this table, corticosteroid use was included as a time-varying covariate.

c
Also includes Hawaiian and Pacific Islander.

d
Also includes American Indian and Alaska Native.

†
Frequency too low to report.

*
Statistically significant (p < 0.05)

Muscle Nerve. Author manuscript; available in PMC 2022 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Haber et al. Page 20

Table 3:

Hazard ratios (HR) for Cox regression models I, II, and III for comparing loss of ambulation across exon 

skippable subgroups. Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet) 
1982–2012.

No. (%) Model I Model II Model III

Factor Level HR (95% CI) HR (95% CI) HR (95% CI)

Mutation Type Other 79 (30.5%)
1
a

1
a

1
a

Exon 8 Skippable 13 (5.0%) 0.22* (0.08, 0.63) 0.21* (0.08, 0.60) 0.23* (0.08, 0.65)

Exon 20 Skippable 7 (2.7%) 0.96 (0.34, 2.69) 0.93 (0.33, 2.65) 0.85 (0.30, 2.39)

Exon 44 Skippable 12 (4.6%) 0.30* (0.12, 0.78) 0.33* (0.12, 0.88) 0.37* (0.14, 0.96)

Exon 45 Skippable 31 (12.0%) 1.30 (0.76, 2.21) 1.54 (0.88, 2.71) 1.15 (0.67, 1.97)

Exon 46 Skippable 16 (6.2%) 0.62 (0.29, 1.34) 0.54 (0.25, 1.17) 0.58 (0.27, 1.25)

Exon 51 Skippable 46 (17.8%) 1.18 (0.72, 1.93) 1.03 (0.61, 1.71) 1.06 (0.65, 1.75)

Exon 52 Skippable 17 (6.6%) 1.34 (0.62, 2.87) 1.21 (0.55, 2.68) 1.29 (0.60, 2.78)

Exon 53 Skippable 38 (14.7%) 1.10 (0.65, 1.89) 1.04 (0.60, 1.79) 1.07 (0.62, 1.83)

Steroid Use
b 156 (60.2%) 0.69* (0.49, 0.98) 0.66* (0.46, 0.95) 0.65* (0.46, 0.92)

Race White 203 (78.4%) -
1
a
 (−)

-

Asian
c † - 0.15 (0.02, 1.12) -

Black or AA 15 (5.8%) - 0.87 (0.40, 1.89) -

Native American
d † - 3.20 (0.43, 23.88) -

Multiple † - 0.41 (0.05, 3.23) -

Other 11 (4.2%) - 0.77 (0.31, 1.95) -

Unknown 17 (6.6%) - 0.59 (0.22, 1.59) -

Ethnicity Not Hispanic or Latino 187 (72.2%) -
1
a
 (−)

-

Hispanic or Latino 49 (18.9%) - 1.59* (1.01, 2.51) -

Unknown 23 (8.9%) - 0.75 (0.35, 1.63) -

Age at Onset - - - 0.91* (0.85, 0.98)

Abbreviations: HR = hazard ratio, CI = confidence interval, AA = African American. - = covariate not included in model.

Reference categories have a HR of 1 and no CI.

a
Reference category.

b
For Cox regression models in this table, steroid use was included as a time-varying covariate.

c
Also includes Hawaiian and Pacific Islander.

d
Also includes American Indian and Alaska Native.

†
Frequency too low to report.

*
Statistically significant (p < 0.05)
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